On double Poisson structures on commutative algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-commutative Poisson algebra structures on affine Kac-Moody algebras

Non-commutative Poisson algebras are the algebras having an associative algebra structure and a Lie structure together with the Leibniz law. The non-commutative Poisson algebra structures on the infinite-dimensional algebras are studied. We show that these structures are standard on the poset subalgebras of the associative algebra of all endomorphisms of the countable-dimensional vector space T...

متن کامل

Finite - dimensional non - commutative Poisson algebras ]

Non-commutative Poisson algebras are the algebras having an associative algebra structure and a Lie algebra structure together with the Leibniz law. For finite-dimensional ones we show that if they are semisimple as associative algebras then they are standard, on the other hand, if they are semisimple as Lie algebras then their associative products are trivial. We also give the descriptions of ...

متن کامل

Differential Calculi on Commutative Algebras

A differential calculus on an associative algebra A is an algebraic analogue of the calculus of differential forms on a smooth manifold. It supplies A with a structure on which dynamics and field theory can be formulated to some extent in very much the same way we are used to from the geometrical arena underlying classical physical theories and models. In previous work, certain differential cal...

متن کامل

Remarks on Commutative Hilbert Algebras

The paper shows that commutative Hilbert algebras introduced by Y.B. Jun are just J. C.Abbot’s implication algebras.

متن کامل

R-commutative Geometry and Quantization of Poisson Algebras

An r-commutative algebra is an algebra A equipped with a Yang-Baxter operator R:A ⊗ A → A ⊗ A satisfying m = mR, where m:A ⊗ A → A is the multiplication map, together with the compatibility conditions R(a⊗ 1) = 1 ⊗ a, R(1 ⊗ a) = a ⊗ 1, R(id ⊗m) = (m ⊗ id)R2R1 and R(m ⊗ id) = (id ⊗ m)R1R2. The basic notions of differential geometry extend from commutative (or supercommutative) algebras to r-comm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2016

ISSN: 0393-0440

DOI: 10.1016/j.geomphys.2016.07.003